Hg_{0.8}Cd_{0.2}Te 光电二极管的 外差量子效率的研究*

戴永江 李 明** 乔立杰 (哈尔滨工业大学应用物理系)

提 要

介绍了 n+-P 型离子注入 Hg_{0.8}Cd_{0.2}Te 光电二极管的敏面上外差量子效率分布函数 η(*a*, *y*) 的 正则 化分析方法,并通过 CO₂ 相干激光探测的方法测量了 η(*a*, *y*)。 关键词: 相干激光探测, HgCdTe 探测器, 量子效率。

一、引 言

目前,在 CO₂相干激光探测技术中常采用 Hg_{0.8}Cd_{0.2}Te 光电二极管或多元探测器,其 光敏面上的外差量子效率分布函数 $\eta(x, y)$ 的均匀性对 CO₂ 相干激光探测系统的灵敏度和 成像系统的像质畸变都有较大的影响。另外通过离子注入型光电二极管的外差量子效率分 布函数的测量、计算和分析,可对 Hg 离子注入情况进行分析,以便采取工艺上的改进措施。 因此,这一课题的研究也是对这种探测器的质量评估和控制的有效方法。

由于 Hgo.8Cdo.2Te 光电二极管的光敏面的面积一般小于 0.4×0.4 mm², 故对外差量子 效率分布函数进行精确测量和计算是一件十分困难和复杂的工作。曾经报道过离子注入型 Hgo.8Cdo.2Te 光电二极管的频率响应特性, 外差量子效率分布函数的研究结果^[1,2]。本文将 介绍一种较为合理的计算和测量外差量子效率分布函数的方法。

二、基本理论

在 CO2 相干激光探测方式中, 混频器输出的信号强度为^[3]

$$I_{\mathfrak{p}}(\boldsymbol{r}, t) = \alpha E_{\mathfrak{s}}(\boldsymbol{r}) E_{L0}(\boldsymbol{r}) \cos(\omega_{IF} t + \phi_{\mathfrak{s}})_{\mathfrak{o}}$$
(1)

当信号光场 E_s(**r**)和本振光场 E_{L0}(**r**)的极化、位相和波前处于最佳匹配条件时,在某一时 刻 t,输出的信号强度的空间分布函数,可简化为

$$I_{p}(\boldsymbol{r}) = E_{s}(\boldsymbol{r}) E_{L0}(\boldsymbol{r})_{o}$$
⁽²⁾

考虑外差量子效率分布函数的影响,上式变为

收稿日期: 1988年12月12日; 收到修改稿日期: 1989年5月7日

^{*} 获国家自然科学基金资助的课题。

^{**} 现在洛阳跟踪与通信技术研究所。

$$I_{p} = \iint_{(s)} \eta(\mathbf{r}) E_{s}(\mathbf{r}) E_{Lo}(\mathbf{r}) ds, \qquad (3)$$

式中 $E_s(\mathbf{r})$ 和 $E_{Lo}(\mathbf{r})$ 分别为信号光场和本振光场在光敏面上的电场强度, $\eta(\mathbf{r})$ 为光敏面上的外差量子效率,s 为积分区域,应当是整个光敏面。

由于 CO2 激光器输出高斯光束,有

$$E_{s}(\boldsymbol{r}) = E_{os} \exp\left(\frac{x^{2} + y^{2}}{w_{as}^{2}}\right),$$

$$E_{LO}(\boldsymbol{r}) = E_{OL} \exp\left(\frac{x^{2} + y^{2}}{w_{OLO}^{2}}\right),$$
(4)

在实际测量中,本振光扩束,信号光聚焦,故束腰半径存在 wolo≫wos 关系。便得到

$$I_{\mathbf{y}}(x', y') = k \iint_{(\mathbf{y})} \eta(x, y) \exp\left[-\frac{(x-x')^2 + (y-y')^2}{w_0^2}\right] dx \, dy, \tag{5}$$

式中 w_0 为信号光束的束腰半径,(a', g')为探测器光敏面上光斑中心的坐标,k为比例系数, 包含了衰减系数。为了使由上式计算出的 $\eta(x, g)$ 有较严格的物理意义, $I_g(x', g')$ 应有较 小的测量误差,使得计算出的 $\eta(x, g)$ 有稳定解。这要求 w_0 尽可能小,并且光敏面正好位于 信号光的束腰处。

利用直接的离散法^[43],或改进后的幂级数法,对(5)式的一维形式进行拟合。采用正则 化方法处理(5)式,并考虑一维情况,有

$$I_{p}(x') = k \int_{L} \eta(x) \exp\left[-\frac{(x-x')^{2}}{w_{0}^{2}}\right] dx = \int_{L} K(x, x') \eta(x) dx_{o}$$
(6)

通过实验可测得 $I_p(x')$ 值,若 K(x, x')的形式已知,便可由(6)式求出 $\eta(x)$ 。这是一个反问题,数学上又叫不适定方程。因为,若实验测量的 $I_p(x')$ 值有一个较小的误差,则会给 $\eta(x)$ 的解带来很大的影响。这种解便没有任何实际的物理意义。因此,在处理这类反问题时 应使得 $\eta(x)$ 有稳定解。

利用正则化方法,将(6)式改为

$$I_{p}(x') = \int_{L} K(x, x') \eta(x) dx + \alpha T, \qquad (7)$$

作为 η(x) 的正则解, 估算最后误差大小, 判断是否需要调整正则参数 α 和正则化因子 T。 对于线性方程组

$$A\eta = I_{g} \tag{8}$$

的解

$$(A^{\tau}A + \alpha H)\eta = A^{\tau}I_{\rho}, \tag{9}$$

式中正则参数 α 一般是小的正数, H 为光滑矩阵, 它的选取应与实际物理意义下的正则化 算子有关, A 为系数矩阵, σ 代表转置, I_{g} 为实验测得的结果, η 则是所应求得的变量的离散 值。将(7)式求得的 $\eta(x)$ 的正则解代入(8)式, 作为反问题的解, 不断调整 α H 和 A 等参 数, 使得最后有稳定解。

离子注入的 Hg_{0.8}Cd_{0.2}Te 光电二极管的光敏面的标称面积 为 0.4×0.4 mm²。在此条件下,将(6)式离散化。在 *a* 方向上,进行 *M* 段分割,步长为 *l*,使 *Ml*=0.4 mm.在 *Y* 方向上,进行 *N* 段分割,使 *Nl*=0.4 mm。采样点坐标为

$$\begin{aligned} x_{m} = mh, m = 1, 2, \cdots, M; \\ y_{n} = nh, n = 1, 2, \cdots, N \\ \mathbb{Z} \bigcup k(x'_{i}, y'_{i}, x_{m}, y_{n} = k_{ijmn}, \eta(x_{m}, y_{n}) = \eta_{mn}, I_{p}(x'_{i}, y'_{i}) = I_{pij}, \bigcup (5) \stackrel{}{\to} \stackrel{}{\to} \stackrel{}{\to} \stackrel{}{\to} \frac{MS}{2} \\ I_{pij} = \sum_{m=1}^{MS} \sum_{n=1}^{N} k_{ijmn} \eta_{mn}, \begin{pmatrix} \dot{v} = 1, 2, \cdots, M \\ j = 1, 2, \cdots, N \end{pmatrix} \\ \uparrow & I = (I_{11}, I_{21}, \cdots, I_{M1}, I_{19}, I_{22}, \cdots, I_{M2}, I_{1N}, I_{2N}, \cdots, I_{MN}) \\ \eta = (\eta_{11}, \eta_{21}, \cdots, \eta_{M1}, \eta_{12}, \eta_{22}, \cdots, \eta_{M2}, \eta_{1N}, \eta_{2N}, \cdots, \eta_{MN}) \\ \downarrow & \vdots \\ k_{i11} \cdots k_{i1M1}, k_{i112} \cdots k_{i1M2}, \cdots, k_{i11N} \cdots k_{i1MN} \\ k_{i2111} \cdots k_{i3M1}, k_{i2112} \cdots k_{21M2}, \cdots, k_{i211N} \cdots k_{21MN} \\ \vdots \\ \vdots \\ k_{MN11} \cdots k_{MNM11}, k_{MN12} \cdots k_{MNM2} \cdots, k_{MN1N} \\ \end{pmatrix}, \end{aligned}$$

则(10)式化为一个 M×N 阶的线性方程组,由于方程组(8)是一个不适定方程,系数矩阵 A 是一个病态矩阵。采用正则化方法,使 α→0 时,(8)式和(9)式才有逼近的稳定解。α不但 应使线性方程组的解收敛,同时还应有较小的误差。这就需要多次进行调整,便 α 合理地减 小,直至方程组(8)式的解,满足实际要求为止。

由于采取了强注入 Hg 离子工艺, 因而在光敏面的某一特定区域内, Hg 离子是连续分 布的。量子效率分布函数可以看作光滑的。取正则化矩阵 I 为单位矩阵,此时,(9)式变为

$$(A^{\tau}A + \alpha I)\eta = A^{\tau}I_{p_0} \tag{11}$$

对该方程求得的一些离散值,直接与光敏面上某点的量子效率相对应。在(10)式的系数矩 阵中,虽然系数矩阵A是病态的,但 $A^{*}A$ 是一个满秩矩阵,因此, $A^{*}A + \alpha I$ 是一个对称矩 阵。当α取一个适当的小的正数时,该矩阵是对称正定的。可以利用赛得尔(Sadel)叠代法 求解。这不但可以控制解的精度,且收敛较快。

通过上述方法求得的光敏面上一些离散点的量子效率分布函数值,还应对整个光敏面 进行拟合。首先,用拉格朗日(Lagrange)插值法求得光敏面上 m=0 及 n=0 对应的两条边 界上格点的值, 即 m=0 时的 η_{mn} 值, 其中 $n=0, 1, 2, \dots, N$, 和 n=0 时的 η_{mn} 值, 其中 m=0,1,2,···,M。一共有(M-N+1)个点的值。一般进行二次插值,便可得到较理想的结果。 再利用平行光滑样条函数进行曲面拟合,便可得到整个光敏面上量子效率分布函数。

三、实验原理

实验测量系统方框图如图1所示。这是一个常规的双管 CO2激光外差探测系统。光 路设计应满足前节提出的要求。 $Hg_{o.s}Cd_{o.s}$ Te 光电二极管安置在精度为 $5 \mu m$ 的三 维 调 节 架上。为了对光电二极管输出信号进行处理,与TR 4110 型频谱仪并接一个单通道数据采 集系统,再与STM型计算机联接起来。移动光电二极管,在 30 MHz 中频信号时,测量8×8 个格点的输出电平值。对每个格点,数据采集系统采样100次,取其中最大电平值,经过模 数转换输入到计算机。在取值时,计算标称面积应将光敏面上引线焊点排除在外。

Ŷ

该实验系统的误差来源于:测定光斑尺寸误差;模数转换器的截断误差;光电二极管的 前放及频谱仪的非线性误差以及 CO₂ 激光 器的功率不稳定等引起的误差。后三项 是误差的主要来源。经计算,相对误差为 **5**.88%。

设 M=8, N=8, 对光敏面进行 8×8 分割,获得8×8个格点的采样值,如表1 所示。

Fig. 1 Scheme of experimental system

相对误差 4E=5.88%, 计算采样值的误差为

$$\delta = \left(\sum_{i=1}^{64} I_i^2\right)^{1/2} \Delta E = 7.0$$

Table 1 Sample value of 8×8 grid points

120 141 160 157 135 118 104	130 159 167 173 150 132 114	142 164 176 180 165 140 123	154 174 181 190 172 165 132	151 167 171 180 161 155 127	. 144 157 161 173 159 147 119	133 140 149 144 144 147 130 108	125 128 132 128 120 110 100
		101	109	100		100	

选正则参数 $\alpha = 100$, 利用赛得尔叠代法进行计算, 若剩差大于 δ 时, 再次 $\alpha_1 = (3\alpha/4)$, 进行叠代。反复进行,直到 ai = 13.19 时,才满足误差范围的要求。计算结果如表 2 所示, 其中还包含了另外17个边界格点的值。

Table 2 The calculating result from sadel iterative method

>NW TYPE UUU PXZ 5,391774E-001 5,630144E-001 5,584626E-001 4,808318E-001 5,771621E-001 4,065377E-001 5,387715E-001 3,626519E-001 3,626519E-001 5,157444E-001 5,157444E-001 5,086319E-001 3,500360E-001 4,907383E-001 3,569275E-001	DAT 5. 566434E-001 4. 969400E-001 5. 856166E-001 4. 185650E-001 5. 752916E-001 5. 16548E-001 5. 116548E-001 5. 153528E-001 4. 172112E-001 3.532213E-001 4. 931041E-001 3.507167E-001 4. 649922E-001 3. 552032E-001	5.775079E-001 4.198133E-001 5.962913E-001 3.634609E-001 5.553488E-001 5.200483E-001 4.653373E-001 5.285460E-001 3.760902E-001 3.494087E-001 3.494087E-001 4.634975E-001 4.265130E-001 4.686195E-001	6. 017708E-001 3. 446435E-001 5. 843099E-001 5. 084532E-001 5. 114382E-001 5. 459032E-001 4. 147928E-001 5. 215821E-001 3. 609322E-001 4. 717315E-001 3. 514836E-001 4. 968960E-001 3. 823897E-001 4. 819987E-001	3, 985381E-001 5, 148295E-001 5, 439972E-001 5, 548826E-001 4, 534494E-001 5, 521443E-001 3, 837316E-001 3, 544081E-001 4, 334607E-001 3, 769671E-001 5, 100809E-001 3, 769671E-001 5, 013729E-001 4, 791545E-001
3. 569275E-001 4. 600868E-001 3. 459012E-001	3.55 2032E-001 4.26 0325E-001	4.205136E-001 4.686195E-001 3.857403E-001	4.819987E-001 3.619963E-001	4.791545E-001 3.554345E-001

最后利用插值公式,求得边界点的值,再利用插商公式计算样条函数需要的边界值及进 行曲面拟合,得到实验测出的量子效率分布函数 $\eta(x, y)$ 的值。

在上述计算过程中,采样程序调用了 FORTRAN 宏观汇编语言的采样程序 IO·ASM, 计算量子效率的主程序为 PQUOM,并调用 SADEL, SPLINE 和 LAR 子程序分别完成求 方程组的解,样条函数与插值⁵⁵。

在图 2 是用 X-Y 记录仪记录的当给定 y = 20 mm 时,光电二极管输出信号幅度 v(x)曲线。图 3 是一条经过计算后的归一化 $\eta(x)$ 分布曲线,从图 3 中,可以看出 $\eta(x)$ 变化的趋势。

四、结 论

研究结果表明:

(1) Hgo.sCdo.2To 光电二极管的量子效率分布函数是不均匀的,并有明显的差异。通过电子束感生电势像(EBIC),可以看到.

(a) 组分比 *x*=0.2 的控制不严格, Hg 离子注入和扩散不均匀是导致光敏面量子效率 分布函数不均匀的主要原因;

(b)表面未经钝化,经过一段时间的存放和使用后,也会影响量子效率分布函数的均匀性。

误差主要存在于光敏面边缘的边缘效应;金属杜瓦瓶的窗口也接收筒壁和电极的反射、 散射光。这对边缘区的信号光有一定的干扰,从而产生误差。Brady, Reine 等人从光电二 极的结构上,也对量子效率分布函数作了一定的解释⁶⁹³。

(2)正则化方法解决了过去计算量子效率分布函数 η(2)时,误差较大和发散的问题。 计算结果和电子束感生电势像的结果是一致的。由于计算机内存的限制及以格点为中心的 离散面积还较大,对测量和计算精度有一定的影响。采用更高速的数据采集系统和内存更 高的计算机,可以获得更为精确的结果。

(3) 改进算法,可以对焦平面阵列探测器的各响应元的量子效率分布函数进行研究,对 相干激光成像系统的像的畸变进行补偿。

参考文献

- [1] Walter Tucker, J. L. Barrentt; «Topical Meeting on Coherent Laser Radar, Technical Digest, Aspen. Colo., U. S. A., O. S. A., 16, 1987 (Jul), 35~37.
- [2] Dai Yongjiang, Pi Mingjia et al.; «Topical Meeting on Coherent Laser Radar, Technical Digest, Aspen. Colo., U. S. A.», O. S. A., 16, 1987 (Jul), 39~42.
- [3] M. C. Teich et al.; Appl. Phys. Lett., 1966, 9, No. 10 (15 Nov), 357~360.
- [4] 陆家昌,李正直; «红外研究», 1985, 4, No. 4 (Aug), 271~276.。
- [5] R. M. Brady, M. B. Reine; Proc. SPIE, 1977, Vol. 124 (Aug), 62~64.

Distribution function of heterodyne quantum efficiency of Hg0.8Cd0.2Te photo-electrical diode*

DAI YONGJIANG, LI MING** AND QIAO LIJIE (Department of Applied Physics, Harbin Institute of Technology)

(Received 12 December 1988; revised 7 May 1989)

Abstract

In the paper a regularization analytical method for the heterodyne quantum efficiency function of the $Hg_{0.8}Cd_{0.2}Te$ photo-electrical diode in responsive element is described. And the distribution function $\eta(x, y)$ has been measured by the method of coherent CO_2 laser detection.

Key words: coherent laser detection; HgCdTe detector; quantum efficiency.

^{*} Financed by NSFC.

^{**} Louyang Institute of Tracking and Telecommnications Technology.